В ванной комнате важна не только практичность, но и ощущение уюта. Душевое ограждение – один из тех элементов, который влияет сразу на всё: и на комфорт, и на внешний вид, и на порядок. Когда речь идёт об индивидуальных размерах, появляется шанс превратить обычную ванную в продуманное до сантиметра пространство.
Ситуация, когда резервуар установлен, герметичность подтверждена, оборудование смонтировано, а система «не качает», встречается чаще, чем принято считать. Причина почти всегда кроется не в насосе и не в автоматике, а в ошибках обвязки и размещения патрубков, допущенных ещё на этапе проектирования или монтажа вертикального сборного резервуара,, что подтверждается практикой профильных предприятий.
Создание собственного винного погреба или подполья в частном доме — это не только способ сохранить и созревать ценные напитки, но и оригинальный элемент интерьера, придающий дому особый уют и индивидуальность.
Физиологическая роль азота в питании растений (часть 2)
Нитратный азот способен накапливаться в растениях, не причиняя им вреда, аммиак же в свободном виде содержится у высших растений в незначительных количествах. Чрезмерное накопление его, особенно при недостатке углеводов, ведет к отравлению организма. Реакция образования аминокислот прямым аминированием кетокислот аммиаком играет большую роль в метаболизме растительного организма. Она указывает на связь углеродного и белкового обмена. Эта связь имеет широкую основу еще и потому, что аминокислоты способны передавать свои аминные группы другим кетокислотам путем реакций ферментативного переаминирования. Процесс переаминирования состоит в переносе аминогруппы аминокислоты (донатор) на кетокислоту (акцептор). К примеру, аспарагиновая и глутаминовая кислоты, передавая свои аминные группы пировиноград-ной кислоте, дают аланин. Глутаминовая и щавелевоуксусная кислоты образуют аспарагиновую кислоту, а аспарагиновая с α-кетоглютаровой — глутаминовую кислоту. Путем переноса аминогруппы аминокислот на кетокислоты может синтезироваться значительное количество аминокислот. В растениях наиболее легко подвергаются переаминированию глутаминовая и аспарагиновая кислоты, что указывает на большую роль этих соединений в процессах обмена веществ. Переаминирование имеет большое значение для синтеза белков, а также для дезаминирования аминокислот. В результате дезаминирования, т. е. отщепления аминогруппы от аминокислоты, образуются аммиак и кетокислота. Keтокислота используется растением для переработки в углеводы, жиры и другие вещества; аммиак же вступает в реакцию прямого аминирования кетокислот, возникающих из углеводов, и дает аминокислоты. Кроме того, аммиак реагирует с аспарагиновой и глутаминовой кислотами, способными связать еще по одной его молекуле, давая таким образом амиды аминодикарбоновых кислот. Физиологическая роль амидов была выяснена исследованиями Д.Н. Прянишникова. Им установлено, что в результате образования аспарагина и глутамина происходит обезвреживание аммиака, накапливающегося в высших растениях при дезаминировании аминокислот или обильном аммиачном питании при недостатке у растений углеводов. Кроме того, аспарагин и глутамин имеют большое значение как резерв дикарбоновых кислот для осуществления реакции ферментативного переаминирования. В процессе переаминирования участвуют не только свободные аспарагиновая и глутаминовая кислоты, но также аспарагин и глутамин, которые к тому же способны к взаимопревращению. Дикарбоновые аминокислоты в значительных количествах входят в состав растительных белков, поэтому превращения этих аминокислот и их амидов играют существенную роль в азотном обмене у растений (Роуз, 1969). В некоторых растениях (щавель, хвощ, осоки) из-за накопления больших количеств органических кислот аммиак обезвреживается не путем образования амидов, а в результате образования аммонийных солей соответствующих органических кислот. Обезвреживание аммиака может происходить также при образовании безвредной для растительного организма мочевины. Наряду с синтезом белков в растении идет и распад их на аминокислоты с отщеплением аммиака. В молодых растущих органах и в молодых растениях синтез белков превышает распад. По данным опытов с изотопом азота 15N (Турчин и др.), в молодых растениях белковый азот обновляется полностью за 72 ч. Весь сложный цикл образования азотистых веществ в растениях начинается с аммиака, а распад их завершается его выделением. Это послужило Д.Н. Прянишникову основанием, чтобы сказать, что «аммиак есть альфа и омега в обмене азотистых веществ у растений».