Новости

Семнадцатого апреля текущего года заместитель главы Правительства Татарстана – руководитель сельскохозяйственного Департамента Марат Ахметов организовал встречу с директором предприятия «APH GROUP» Витсе Оостербаном. Мероприятие посвящалось выращиванию картофеля и плодоовощной продукции в соответствии с нидерландскими методиками.



Семнадцатого апреля текущего года заместитель главы Правительства Татарстана – руководитель сельскохозяйственного Департамента Марат Ахметов организовал встречу с директором предприятия «APH GROUP» Витсе Оостербаном. Мероприятие посвящалось выращиванию картофеля и плодоовощной продукции в соответствии с нидерландскими методиками.



Сто пятнадцать миллионов рублей из казны областного уровня направят на частичное возвращение сельским труженикам капитальных расходов на открытие и обновление объектов агротехнической отрасли. Список подобных объектов расширяется, это позволяет привлекать капиталовложения в популярные сферы аграрного комплекса субъекта.


Яндекс.Метрика
Транспортные формы микроэлементов

Транспорт микроэлементов между органами растения (дальний) имеет много общего с транспортом макроэлементов. В надземные органы растений поглощенные корнем микроэлементы попадают с восходящим током воды по ксилеме. Проводящие элементы ксилемы расположены в центральном цилиндре или стеле корня. Поэтому поглощенные вещества, прежде чем поступить в ксилему, должны проникнуть через ткани, окружающие центральный цилиндр корня (ризодерму, кору, эндодерму, перицикл). Такое передвижение веществ к центральному цилиндру называется радиальным транспортом.
Передвижение поглощенных микроэлементов может происходить как в ионной форме, так и в виде комплексов в зависимости от химической природы элемента и условий среды. Скорость транспорта катионов микроэлементов ограничивают отрицательно заряженные функциональные группы (особенно карбоксильные) пектина и гемицеллюлоз. Эти вещества формируют клеточные стенки и придают нм свойства катионообменника.
Никотианамин в ксилеме — универсальный хелатор, связывающий катионы многих микроэлементов (Fe, Zn, Ni, Mn, Cu, Co), обнаружен у всех растений. Комплексы микроэлементов с анионом кикотианамина (L3+) характеризуются следующими константами устойчивости (рК,): Fe2+-12,8, Co2+-14,8, Zn2+-I5,4, Nl2+-16,1, Cu2+-18,6 Fe2+-20,6. Величины этих констант могут варьировать в зависимости от конкретных условий среды. В зонах деления клеток, дифференциации и растяжения корня регистрируются наибольшие концентрации никотианамина. Мутант томата chloronerva с нарушенным синтезом никотианамина характеризовался слабым ростом, дефектами в развитии и проявлением типичных симптомов Fe-дефицита. Биосинтез никотианамина тесно связан с биосинтезом метионина. Экспрессия генов NAS, кодирующих синтез никотианаминсинтазы, возрастает в условиях недостатка в среде железа, цинка и меди. При избытке тяжелых металлов экспрессия NAS-генов также усиливается, что свидетельствует о вовлеченности никотианамина в механизмы толерантности растений к этой разновидности минерального стресса.
У злаков (стратегия II) важным транспортным лигандом являются фитосидерофоры, в частности производные мугеневой кислоты. Эти соединения способны образовывать комплексы не только с железом, но и с другими микроэлементами: цинком, медью, никелем и, возможно, кобальтом. В корнях ячменя обнаружено накопление мугеневой кислоты при недостатке не только железа, но и цинка. Причем, в форме фитосидерофорного комплекса цинк поглощался лучше, чем в форме двухвалентного катиона.
Катионы микроэлементов также транспортируются в форме органических кислот и аминокислот. Вклад этих лигандов в транспорт микроэлементов существенно зависит как от химической природы транспортируемых элементов, так и от условий произрастания растений.


© 2012-2016 Все об агрохимии Все права защищены
При цитировании и использовании любых материалов ссылка на сайт обязательна