Новости


Любое предприятие, где есть риск аварий, обязано думать наперёд. Особенно это касается опасных объектов первого и второго классов. Там не прощают ошибок. Чтобы работать по правилам и свести риски к минимуму, компаниям нужна декларация промышленной безопасности. Но не просто на бумаге. Её проверяют через экспертизу.




Компания «КосмоДом» уже более 27 лет работает на рынке строительных и отделочных материалов, предлагая клиентам только проверенные решения. За это время мы заслужили доверие покупателей, расширили ассортимент и начали сотрудничать с ведущими производителями.




Перекачка кислот и щелочей — задача не из простых. Эти вещества могут разъесть почти всё, что попадётся на пути. Поэтому и подход нужен особый. Простые резиновые или пластиковые шланги здесь не справятся. Они быстро теряют форму, пропускают жидкость или вовсе трескаются. Чтобы этого не произошло, используют специальные промышленные шланги. Именно они рассчитаны на контакт с химией, не боятся её агрессивного характера и выдерживают нагрузку.


Яндекс.Метрика
Обмен микроэлементов между ксилемой и флоэмой

Некоторые клетки сосудистого пучка ксилемы снабжены выростами стенок, выстланных плазмалеммой, что значительно увеличивает ее площадь. Эти клетки участвуют в транспорте веществ в сосуды и обратно и называются передаточными (переходными). Они могут граничить с сосудами ксилемы и ситовидными трубками флоэмы. Связь между ксилемой и флоэмой с помощью передаточных клеток осуществляется в корне, стебле, листьях и других частях растений. В растениях пшеницы передаточные клетки сосредоточены в области вегетативных и колосковых узлов, где осуществляется обмен растворами между ксилемой и флоэмой. По таким узлам может интенсивно транспортироваться рубидий из ксилемы во флоэму.
Ретранслокация бора в растущие соцветия люпина и брокколи (происходит по флоэме) существенно зависит от количества бора, поглощаемого корнями растений, т. е. от интенсивности поступления этого микроэлемента из ксилемы во флоэму. Аналогичные данные получены по поступлению бора в молодые слабо транспирирующие колоски пшеницы. Следовательно, интенсивность транспорта бора по флоэме определяется интенсивностью его ксилемного транспорта, зависящей, в свою очередь, от скорости транспирации листьев. Во влажном климате стерильность цветков, вызванная недостатком бора, может быть обусловлена ограниченным вследствие слабой транспирации ксилемным транспортом бора в листья.
Цинк, транспортируемый по ксилеме, прежде чем поступить в зерновку пшеницы, попадает во флоэму плодоножки и ости. В сок флоэмы содержимое ксилемы может попасть после транспорта через плазматические мембраны ее ситовидных трубок или клеток-спутников. В кончики корней пшеницы радиоактивный изотоп 65Zn, нанесенный на поверхность главного корня, поступал сложным путем: сначала транспортировался в побег вверх по ксилеме, а затем вниз по флоэме в кончики корней. Такая траектория движения цинка позволяет предположить возможность перемещения цинка из ксилемы во флоэму. Аналогичный путь допустим для 54Mn и 65Ni, в отличие от 57Co.
Загрузка флоэмы железом ксилемного происхождения осуществима при участии специфических транспортеров. Белок YSI — один из вероятных кандидатов на эту роль.
Элементы флоэмы, в отличие от ксилемы, состоят из живых клеток (ситовидных трубок и клеток-спутников), связанных между собой многочисленными плазмодесмами. Поэтому дальнейшее перемещение микроэлементов по растению, например к репродуктивным органам, происходит по симпласту.


© 2012-2016 Все об агрохимии Все права защищены
При цитировании и использовании любых материалов ссылка на сайт обязательна